
A TEXT ANNOTATION BUILDING BLOCK

GHENTCDH

Jahid Chetti, Frederic Lamsens, Bo Vandersteene, Joren Six

Contact

Joren Six - joren.six@ugent.be

ghentcdh.ugent.be

GhentCDH

GhentCDH

Thanks to
The text annotation work is supported and used by the following
projects:

• ANNOPHIS
• EVWRIT
• MELA

And many more projects to come. Also supported by the FWO
international research infrastructure grant CLARIAH-VL+.

Introduction

Text annotation is crucial in many digital humanities research projects,
particularly for ancient text analysis and language studies. It can facilitate
analysis of ambiguous language, cultural contexts, evolving grammar in
historical documents, and link texts to historical entities (events, places,
persons).

Easy-to-use environments for text annotation allows scholars to share
and scale-up their work. This facilitates large-scale computational
analysis. For example, a text annotation environment can help scholars
uncover linguistic patterns and document the evolution of ancient
languages.

At GhentCDH we developed a reusable text annotation building block. It is
developed with several projects in mind but can be put to use in many
cases.

Needs

A general text annotation environment has a couple of requirements.
Below these are grouped around visualisation, creation, adaptation
and sanitation.

Visualisation
• Visualising short annotations in the text
• Visualising longer, structural annotations in the margin
• Allow overlapping annotations
• Quickly filtering annotations of interest

Creation
• Creating new annotations
• Adding meta-data to annotations
• Linking annotations to other texts or annotations

Adaptation
• Changing existing annotations via an easy-to-use UX
• Moving annotations around
• Removing annotations

Sanitation
• Flexible application dependent rules
• Quickly fix or remove invalid annotations

A text annotation building block

To address the common needs above, GhentCDH developed a resuable,
flexible text annotation building block for use in web-applications.

The building block is a piece of software, a software component. The
component needs to be built into an application. The application – not the
component - determines how the annotations look, which actions on
annotations are allowed and which rules are applied to the annotations:
e.g. if each annotation must snap to word-boundaries or not.
It is designed with transliteration workflows in mind: there is support to
show line numbers and structural annotations.

Tech Talk

The source code is available on Github and is published under the name
vue_component_annotated_text . Technical info:

• Programmed in Typescript: typed Javascript prevents some
programming errors.

• It is a Vue 3 component: a reactive framework enables a snappy UX.
• The component has flexible styling via CSS variables or styles but

offers sensible defaults.
• Rules and actions are made possible via slots and templates. This

allows flexibility in both UI as behaviour.

Alternatives

Inception
• A collaborative web-based environment for text annotation
• UX is problematic
• Flexibility is limited
• Ready-to-use environment

Recogito JS Text Annotator
• Component still in development
• No documentation
• No concept of line numbers: digital text annotation vs texts linked to

physical documents

Conclusions

Does your research project need a text annotation environment? Check
out the GhentCDH services and contact us.

Fig: A Greek text originating from a papyrus source (a), the same text transliterated and digitized (b), and (c) the text with several types of annotations. It shows
overlapping annotations, structural annotations and different types of annotations (identified by color). The example shows text 34 from the EVWRIT data set.

From source to understanding

Fig: This demo application show support for visualisation of different
annotation types, selection of annotations, and a modification
workflow - see the icons next to the annotation.

a b c

Demonstration

The demo application shows a text annotation correction process. The aim
is to quickly fix many annotations either automatically or flag annotations
to manually check and fix.

The demo application features:

• Annotation type dependent rules to automatically suggest fixes to
annotations.

• Application specific annotation visualisation
• A way to list automatically fixed annotations
• A way to quickly verify applied changes

The demo application was developed in context of the EVWRIT project.

