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Language technology
coreference resolution, cross-lingual transfer models, detection of events, sentiment, 

irony, arguments and emotion in (financial) news data and social media

Translation technology
machine translation, post-editing, human-computer interaction, translation quality, 

translation difficulty assessment and gender-inclusive translation

Digital Humanities
digital text analysis tools for research in the humanities and social sciences

Language and translation technology for educational applications
automatic writing evaluation, readability assessment, vocabulary and example selection 

for SLA, MT for language learning

Terminology
automatic (multilingual) terminology extraction and terminology management

RESEARCH LINES
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NLP and Machine learning
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AI / Language and Translation Technology

AILanguage and Translation 
Technology

Can I help you?

NLP



Sentiment Analysis
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HOW DOES A 
COMPUTER LEARN LANGUAGE?

1. Linguistic rules created by experts: rule-
based and lexicon-based approaches

2. Rules are learnt based on examples: data-based 
approaches

= Machine learning: "“giving computers the 
ability to learn without being explicitly 
programmed” (Arthur Samuel, 1959).
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Machine learning
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Machine learning 
algoritme

Prediction for 
new dataTraining data

HAATOK

FR → NL
un navire → een schip



Recent ML: Neural systems
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Training data Neural network Prediction

FR → NL
un navire → een schip

We traveled to the VS by … 

Q: What is the capital of Mongolia?
A: 



How does it work?

Step 1: train (large) language model

> Trained to predict the statistically most probable next word (on a massive text 

corpus)

Whisk together the flour, baking soda, and a pinch of [???] in a large bowl. 



➢ Computers cannot work with text > we represent words as numeric vectors

computers can work with

➢ Those numbers contain information about the meaning of words, deduced 

from the contexts in which these words occur (in massive text collections)

How does it work?

Texts Language model
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Fine-tuning

= train large language 

model for specific task 

based on manually 

labeled data (e.g., for 

sentiment analysis)

How does it work?

Step 2: Fine-tune 

large language 

model



Fair NLP systems



Bias in NLP



BIAS in NLP systems
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Training of 

a model

GIGO!

Model 

generates 

output for 

new data

 Selection bias

 Harmful content: 

hatespeech, stereotypes, 

prejudices

Model 

bias

Data 

collection 

and 

annotation



Selection and model bias
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Currey & Hsu, EMNLP 2022

https://www.amazon.science/blog/dataset-
helps-evaluate-gender-bias-in-machine-
translation-models



Selection and model bias
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Currey & Hsu, EMNLP 2022



DeBiasByUs
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RAINBOW
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RESEARCHING STEREOTYPES TOWARDS 
LGBTQIA+ PEOPLE WITH MULTILINGUAL NLP

Why stereotypes?

1. They are at the base of the "Pyramid of Hate"

2. They can help in preventing Hate Speech

in its early-manifesting phases

Why LGBTQIA+?​

1. They are among the most critically targeted groups online

2. Only a few studies so far (most work explores stereotypes about 

ethnicity, gender or religion...)



RESEARCH QUESTIONS & OBJECTIVES

1. How do we generalize and define stereotypes (towards 

LGBTQIA+ people)?

2. How do we implement fairer and more inclusive AI systems?

3. How can we use NLP applications to foster positive online 

behavior in younger generations with regards to LGBTQIA+ 

individuals?



Ecological footprint



De Standaard, 15/03/2023

- GPT-3: trained on hundreds of 

millions of text pages (45 terabyte 

text);

- While training, the algorithm deduces 

175 billion of parameters from data;

- Training phase corresponds to 600 

flights from London to New York

Ecological footprint of large language models



Fair and robust NLP 

systems



English vs low-resourced 
languages

en

fr

de

es

it

pt

nl

ru

other
GPT3: 92,1% training data 

= English

Dutch: 0,35%

=> State-of-the-art NLP 

models are English-centric 



LANGUAGE MODELS FOR LOW-

RESOURCED LANGUAGES
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Bridging the language gap for NLP

● Investigate approaches to improve language models for 

low(er)-resourced languages

> +7000 languages, only a few dozens profit from research in NLP (Joshi 

et al. 2020)

> research language models for low-resourced languages:

- using pretrained multilingual language models

- adapting them

- training new models from scratch



Cross-lingual transfer

Pre-trained 

Multilingual 

Model 

Cross-lingual transfer

Fine-tune on 

labeled data for 

SL (e.g., 

sentiment labels 

in English data)

Evaluation for 

this task on 

target 

language

Idea: use (labeled) data from one (or more) source languages to 

solve a problem for a low(er)-resourced target language



EXALT: multilingual data set for emotion

● Explainability for cross-lingual emotion in 

tweets

● Trained on English emotion data

● Evaluated on a wide range of target languages 

(ao Dutch, Russian, Spanish, French, 

Japanese, …)

Joy 

Love 

Fear 

Sadness | 

Anger 



NLP FOR ANCIENT 

LANGUAGES
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https://www.dbbe.ugent.be/occurrences/search


● Interdisciplinary project: “Interconnected texts”: a graph-based 

computational approach to metrical paratexts in Greek 

manuscripts (NLP (LT3), Greek literature, Greek linguistics, 

computer science) 

○ NLP: Measuring Orthographic and Semantic Similarity 

between Byzantine Greek Epigrams



DATA USED TO TRAIN DBBERT



● Morpheus: rule-based system

● RNN Tagger: best- performing 

for AG

● Freq. baseline: most occurring 

label / token

● DBBErt: fine-tuned embedding 

of our DBBErt

Fine-tuning part-of-

speech + fine-grained 

morphology



CUNE-IIIF-ORM
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● IIIF - an image and text API

● OCR - automatically reading cuneiform texts

● NLP - annotate and analyze Akkadian texts (Ghent University) > 

Fully annotated Old Babylonian (c. 2000-1600 B.C.E.) Akkadian 

letters

Towards an Internationally Interoperable

Corpus of Cuneiform Tablets



AKKADIAN

● East Semitic language

● Written with the cuneiform script

● In use for more than 2500 years

● Dominated modern-day Iraq



NLP FOR CUNEIFORM AKKADIAN

Avg. accuracy results (5-fold on 

10K tokens)

PoS (transliterated)

Arabic: 94,1 %

Japanese: 93,4 %

mBERT: 90,3%

PoS + morphological tags

Multilingual: 71,0 %

Arabic: 76,2 %

ML experiments for Part-of-Speech 

tagging and morphological annotation:

- Embedding models: 

Multilingual BERT

Semitic PLM: Arabic, Hebrew

Japanese



Solutions

> Support with larger Semitic 

languages (Arabic and Hebrew)

> Specialists gathering data

> Develop UD standards

Problems

- Low-resourced language

- Few machine readable texts

- Inconsistent formatting and 

missing annotation standard

NLP FOR CUNEIFORM AKKADIAN

>> Further investigate impact of:

- different language models / combinations of languages

- adding similar data to train a first Akkadian language model



Interpretable NLP systems



Data Output



Data Output

“Black Box”



IRONY DETECTION
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Irony detection

● Manual annotations by trained linguists 

● Task: which tweets are ironic and how is the irony realised?      
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literal sentiment: positive (“can’t wait”)

intended sentiment: negative (“go to the dentist”)



Irony Detection: trigger words

● trigger word annotation

○ By humans

○ By systems

● advantages:

○ align with system 

interpretability
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Irony detection: explanations by humans and 

machines

What do trigger words mean? Why these words? => open to 

interpretation

● Generate & evaluate explanations

● Compare human and generated explanations
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Ironic tweet: Loooovvveeeeeee when my phone gets wiped

Explanation: When your phone gets wiped (which indicates someone did not do 

it on purpose), you lose all data on your device. This includes a lot of personal 

information and pictures that people might want to save as keepsakes. As 

people would not like (accidentally) losing their personal data, the positive

evaluation in this tweet is ironic.

Background knowledge:

- When a phone gets wiped, all personal data and information is lost.

- People do not like losing access to their personal data on their phone
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Irony detection: explanations by humans and 

machines

Evaluate? Explanation ranking by other group of humans

> works very well for English

> GPT models ranked higher than humans

> other fine-tuned generative explanations are 

indistinguishable from human explanations

> Next: Dutch explanations !?
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Conclusion

Lot of ongoing research and remaining 

challenges to investigate more fair, robust 

and interpretable NLP systems:

● carefully curated data sets covering 

different languages, minority groups, 

domains, text genres and language 

variants (historical, dialects, …)

● cross-disciplinary research
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